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Supersymmetric quantum mechanics requires g = 2
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Georg Junker

European Southern Observatory - Karl-Schwarzschild-Straße 2, D-85748 Garching, Germany and

Institut für Theoretische Physik I, Universität Erlangen-Nürnberg - Staudtstraße 7, D-91058 Erlangen, Germany

received 11 April 2020; accepted 18 May 2020
published online 29 May 2020

PACS 03.65.Pm – Relativistic wave equations
PACS 11.30.Pb – Supersymmetry
PACS 13.40.Em – Electric and magnetic moments

Abstract – Relativistic arbitrary spin Hamiltonians are shown to obey the algebraic structure
of supersymmetric quantum system if their odd and even parts commute. This condition is
identical to that required for the exactness of the Foldy-Wouthuysen transformation. Applied to a
massive charged spin-1 particle in a constant magnetic field, supersymmetric quantum mechanics
necessarily requires a gyromagnetic factor g = 2.
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Introduction. – There is some common agreement
that the gyromagnetic ratio g of charged elementary par-
ticles when coupled to an electromagnetic field is g = 2.
There are several reasonable arguments for this. The equa-
tion of motion for the spin vector, as shown by Bargmann,
Michel and Telegdi [1], takes a very simple form when
g = 2. As argued by Weinberg [2] and much later by
Ferrara, Porrati and Telegdi [3], the requirement to have
a good high-energy behaviour of scattering amplitudes,
one must choose g = 2 for any spin. In 1994 Jackiw [4]
showed that the value g = 2 also follows from a gauge sym-
metry in the case of a massless spin-1 field coupled to an
electromagnetic field. This is of course in agreement with
the standard model. Here the currently known electrically
charged elementary particles are either spin- 1

2 fermions or
spin-1 bosons. The standard model indeed requires for all
these charged particles a value g = 2 at the tree level.
Whereas for the elementary fermions (s = 1/2) this asser-
tion is consistent with the Belifante [5] conjecture g = 1/s,
it obviously disagrees with the case of vector bosons where
s = 1 and the Belifante conjecture would imply g = 1. In
fact, precision measurements at the Tevatron [6] resulted
in the bounds 1.944 ≤ g ≤ 2.080 at 95% C.L. for the W
boson. Hence, the case of spin-1 elementary particles is of
particular interest as no massive and charged higher-spin
elementary particles are known yet.

In 1992 Ferrara and Porrati [7] utilized an N = 1
supersymmetry algebra to show that “the gyromagnetic
ratio of arbitrary-spin supersymmetric particles must be

equal to 2”. Whereas Ferrara and Porrati considered a
supersymmetry (SUSY) where the supercharges trans-
form bosons into fermions and vice versa, we consider
in this brief report relativistic Hamiltonians for arbitrary
spin, that is, characterising the relativistic dynamics of a
standard particle with arbitrary but fixed spin. Under the
assumption that the even and odd part of such a Hamilto-
nian commute, it is shown that one can construct a SUSY
structure know from SUSY quantum mechanics. Here the
SUSY charge transforms between positive and negative
energy eigenstates. For this we first generalise the con-
cept of a supersymmetric Dirac Hamiltonian to relativis-
tic Hamiltonians for arbitrary spin s = 0, 1

2 , 1, 3
2 , . . .. Then

we consider the case of a charged particle with s = 1 in-
teracting with an external constant magnetic field. Here
the coupling to the spin-degree of freedom is a priori con-
sidered with arbitrary gyromagnetic ration g. It is shown
that supersymmetric quantum mechanics requires g = 2.

Supersymmetric relativistic Hamiltonians. – The
Hamiltonian of an arbitrary spin-s Hamiltonian can be put
into the form [8]

H = βM + O, (1)

which acts on the Hilbert space H = L2(R3) ⊗ C2(2s+1)

whose elements are 2(2s + 1)-dimensional spinors. The
matrix β obeys the relation β2 = 1 and may be represented
as a block-diagonal matrix

β =

(

1 0
0 −1

)

, (2)
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where the 1 stands for the 2s+1-dimensional unit matrix.
Let us note that the two parts of the Hamiltonian (1) are
chosen such that M accommodates all the even elements
and O all the odd elements of H with respect to β. That is,
we have the commutation and anti-commutation relations

[β,M] = 0, {β,O} = 0. (3)

Note that the Hamiltonian (1) is Hermitian, i.e., H = H†,
only for the case of fermions, and hence for half-odd-
integer s. For bosons, where s is integer, the Hamiltonian
is pseudo-Hermitian, i.e., H = βH†β. Having this in mind
it is straightforward to show that in the representation (2)
both parts of H are necessarily of the form

M =

(

M+ 0
0 M−

)

, O =

(

0 A
(−1)2s+1A† 0

)

, (4)

where M±: H± �→ H± with M †
± = M±, A: H− �→ H+

and A†: H+ �→ H−. Here we have introduced the positive
and negative energy subspaces H+ and H−, which are also
eigenspaces of β for eigenvalue +1 and −1, respectively.
Note that H = H+ ⊕ H− and H± = L2(R3) ⊗ C2s+1.
Well-know examples are the Klein-Gordon (s = 0) and
the Dirac (s = 1/2) particle in a magnetic field [9].

Let us now assume that the odd and even parts of H
commute, that is, [M, O] = 0. This assumption implies

M+A = AM−, A†M+ = M−A†. (5)

From this condition it follows that the squared Hamilto-
nian (1) becomes block diagonal as the off-diagonal blocks
vanish due to (5). That is

H2 =

(

M2
+ + (−1)2s+1AA† 0

0 M2
− + (−1)2s+1A†A

)

,

(6)
which allows us to define a SUSY structure in analogy to
the Dirac case [10,11]. To be more explicit let us introduce
the non-negative SUSY Hamiltonian

HSUSY :=
(−1)2s+1

2mc2

(

H2 − M2
)

=
1

2mc2

(

AA† 0
0 A†A

)

≥ 0 (7)

and the corresponding complex SUSY charge

Q :=
1√

2mc2

(

0 A
0 0

)

, Q† =
1√

2mc2

(

0 0
A† 0

)

. (8)

It is now obvious that these operators together with the
Z2-grading (or Witten) operator W := β obey the SUSY
algebra

HSUSY ={Q, Q†}, {Q, W}=0, Q2 = 0 = (Q†)2,

[W, HSUSY] = 0, W 2 = 1.
(9)

Hence, an arbitrary spin Hamiltonian of the form (1) obey-
ing the condition (5) may be called a supersymmetric

arbitrary-spin Hamiltonian. This is consistent with the
usual definition [10,11] of a supersymmetric Dirac Hamil-
tonian in the case s = 1

2 . Let us note that condition (5)
also implies that M commutes with all operators of the
algebra (9).

It is interesting to note that the condition [M, O] = 0
in addition implies that there exists an exact Foldy-
Wouthuysen transformation [12–14]

U :=
|H | + βH

√

2H2 + 2M|H |
=

1 + βsgnH
√

2 + {sgnH, β}
, (10)

sgnH := H/
√

H2, which brings the Hamiltonian into a
block diagonal form, cf. eq. (6),

HFW := UHU † = β
√

H2 = β|H |. (11)

As a side remark we mention that the two operators

B± :=
1

2
[1 ± β] , Λ± :=

1

2
[1 ± sgnH ] (12)

are projection operators onto the subspaces H± of positive
and negative eigenvalues of β and H , respectively, and
they are related to each other via the unitary relation [15]

B± = UΛ±U †. (13)

That is, the positive and negative energy eigenspaces are
transformed via U into eigenspaces of positive and nega-
tive eigenvalues of β = W , cf. eq. (11). Note that we may
express U in terms of B± and Λ± as follows:

U =
B+Λ+ + B−Λ−

√

(B+Λ+ + B−Λ−)(Λ+B+ + Λ−B−)
. (14)

Supersymmetric vector bosons. – Let us now con-
sider the case of a vector boson with charge e and mass
m interacting with a constant external magnetic field �B
characterised via the vector potential �A = 1

2
�B × �r. The

corresponding Hamiltonian is given by

H =

(

M+ A
−A −M−

)

, (15)

where

M± := mc2 +
�π2

2m
− ge�

2mc
(�S · �B),

A :=
�π2

2m
− 1

m
(�S · �π)2 +

(g − 2)e�

2mc
(�S · �B) = A†

(16)

and �π := �p − e �A/c. Here �S = (S1, S2, S3)
T is a vector

whose components are 3 × 3 matrices obeying the SO(3)
algebra [Si, Sj ] = iεijkSk representing the spin-one-degree

of freedom of the particle, that is �S2 = 2 as the spin
s = 1 for a vector boson. In the above Hamiltonian we
have introduced an arbitrary gyromagnetic factor g which
describes the coupling of this spin degree of freedom to
the magnetic field �B. Note that the above Hamiltonian
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was, to the best of our knowledge, first derived in 1940 by
Taketani and Sakata [16] with g = 1. At the same time
Corben and Schwinger [17] had studied the electromag-
netic properties of mesotrons and concluded that g = 2 is
required to have a singularity-free theory. For later work
using the above Hamiltonian with both g = 1 and g = 2 as
well as arbitrary values for g see, for example, refs. [18–23].

Let us now investigate if the above Hamiltonian (15)
together with (16) does form a supersymmetric relativistic
spin-1 Hamiltonian. For this we recall the relation [22]

[�π2, (�S · �π)2] =
2e�

c
[(�S · �B), (�S · �π)2], (17)

which allows us to explicitly calculate the commutator

[M±, A] = (g − 2)
e�

2m2c
[(�S · �B), (�S · �π)2]. (18)

Obviously for a non-vanishing magnetic field the SUSY
condition (5) is only fulfilled when g = 2. In other words,
when we require that the relativistic Hamiltonian for a
massive charged spin-1 particle in a magnetic field is a su-

persymmetric Hamiltonian in the above sense, only g = 2
is allowed. This is indeed similar to the argument [11] that
the phenomenological non-relativistic Pauli-Hamiltonian
for a charged spin-1

2 fermion exhibits a SUSY structure
only when g = 2.

Concluding remarks. – In a final remark let us note
that the above SUSY structure allows to reduce the eigen-
value problem of a supersymmetric arbitrary-spin Hamil-
tonian to that of a non-relativistic Hamiltonian Hs. As
we will show elsewhere [24], for a charged particle in the

constant magnetic field �B the FW-transformed Hamilto-
nian (11) for the cases s = 0, s = 1

2 and s = 1 takes the
form

HFW = βmc2

√

1 +
2Hs

mc2
, (19)

where

H0 :=
1

2m
(�p − e �A/c)2,

H 1

2

:=
1

2m
(�p − e �A/c)2 − e�

mc
(�σ · �B),

H1 :=
1

2m
(�p − e �A/c)2 − e�

mc
(�S · �B).

(20)

Obviously, H0 and H 1

2

represent the well-known non-
relativistic Landau and Pauli-Hamiltonian, respectively,
and H1 is the correct non-relativistic Hamiltonian for a
spin-1 particle in a magnetic field with g = 2. In the
above �σ is a vector whose components consist of Pauli’s
2 × 2 matrices representing the spin- 1

2 degree of freedom.
The purpose of this short note is two-fold. First

we generalised the concept of supersymmetric relativis-
tic Hamiltonians known from the Dirac Hamiltonian with
s = 1

2 to the general case of arbitrary s. More explicitly,

under the condition (5) it was shown that a SUSY struc-
ture, cf. eqs. (7)–(9), can be accommodated. Second, by
considering a massive charged vector boson, i.e., s = 1,
in the presence of a constant magnetic field, this system
resembles a SUSY structure if and only if its gyromagnetic
factor g = 2.

∗ ∗ ∗

I have enjoyed enlightening discussions with Mikhail

Plyushchay for which I am very grateful.
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